EFFECT OF SURFACE TENSION ON THE ONSET
OF CONVECTION IN A LAYER OF LIQUID
WITH A FREE SURFACE

V. Kh. Izakson

The problem of stability of a plane horizontal layer of liquid heated from below is considered
with surface tension at the upper surface taken into account, The problem is stated in
section 1, proof of the existence of stability threshold is given in section 2, while section 3
concerns the construction of neutral curves by numerical methods and with the stabilizing
effect of surface tension on the state of equilibrium.

The problem of convection onset in a liquid layer was considered in [1, 2] on the assumption that the
free surface remains unperturbed. The critical Rayleigh number R, = 1100 obtained there is valid for
liquid layers of considerable thickness and strong gravitational fields, while the problem, as stated, ex-
cludes the effect of surface tension.

1. Equations and Boundary Conditions. A horizontal layer of liquid with free upper surface and
bounded from below by a solid wall is placed in a gravitational field. Let us consider the problem of
equilibrium stability when the temperature difference at the layer boundary surfaces is maintained constant.
Equations of free convection are of the form (3]} '
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Here v is the velocity vector, T is the temperature, p is the pressure, G is the Grashof number, P is

the Prandtl number, 8 is the volumetric expansion coefficient of the liquid, g is the free-fall acceleration,

& is the difference of temperatures at the upper and lower surfaces, h is the mean thickness of the liquid

layer assumed to be given and independent of time, ¥ is the coefficient of kinematic viscosity, ¥ is the coef-

ficient of thermal diffusivity, and the x;-axis is directed downward.

Surface tension at the free surface x; = ¢(x,, X,, ) is taken into consideration, and in accordance with
[3] we assume fulfillment of the following conditions:
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Here m; is the external pressure, Tik is the stress tensor, n is a vector normal to the free surface, F
and S are dimensionless parameters, a is the coefficient of surface tension, and p is density.
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We assume that at the wall Xy = 1 the temperature and adhesion
(1.3)

T = 8, = const, v=20

are constant,
Let us assume that the functions v(x), p(X), and T(x), and «¢(x;),%,, t) are periodic in directions x; and
x4 with periods Ly = 274 and Ly = 27 /a,, respectively, and that the thickness of the liquid layer is constant,

i.e.,
\ (1.4)
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and that there is no motion of the liquid in any horizontal direction
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2. The Linearized Problem. The following solution
vo =0, Ty= 25 py=—YalGx? =0 (2.1)

of problem (1.1)~(1.3) corresponds to the equilibrium state of a liquid heated from below.
Using the small-oscillations method we linearize system (1.1)-(1.3) in the neighborhood of solution

(2.1) and, assuming
V(X ) =v(x)ed, T(x,8)=T(x)e", p(x,t)=p(x)el,

P (T, Zay £) = P (24, T5) &

eliminate time. As the result we obtain the spectral problem
(2.2)
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As the stability threshold we consider those parameter values at which ¢ = 0 is a point of the spec~
trum of problem (2.2), (2.3). As to the oscillatory instability, it is only known that it is impossible for

F=0.
Assuming o = 0 in (2.2) and (2.3), eliminating vy, v,, p, and ¢, and separating variables

T(x) =T (x) gl %) - p(X) = vy (25) el(rxnt 225)

we obtain the following eigenvalue problem:
Lo, = —ha®T, LT = v, (2.4)
23 =0, v3=0, Ly; =0, ¢*(1 4+ a?n) T = p(DLv; — 20*Dwy)
zz=1, v3=0, Doy=0,T =0 (2.5)
=, r=oardo?t L=D'—of, A=PG, u=1, n=SF

Problem (2.4), (2,5) differs from the similar problem in [4] by the positive factor
1 + a?n

The following theorem can be proved in the same manner as in [4].

Theorem 2.1, Problem (2.4), (2.5) has a simple eigenvalue A for anyp > 0 and n > 0. A positive
eigenfunction correspouds to that eigenvalue, and in a circle of radius A4 there are no other eigenvalues of

problem (2.4), (2.5).
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3. Numerical Calculation, The eigenvalues A, of problem (2.4), (2.5) were
numerically determined by the transcedental equation
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Fig, 3
det 4 =0

where A = (aj) is a fourth-order matrix whose elements are defined by the follow-
ing expression:

ay = —3(1 + o) + ay5, ap = 6 + 2)

ay = la( +2) +V3b M — 2)]
=71 + 2)b — V3a(d — 2)], ay = Rech ac -+ 2¢° cos g,

1y =

@y, = —Imshac, a,; = 2sh a cos @, a,, = 2ch @ sin @,
ay = —Rechae, — 2¢™ cos ¢y, ag = Imsh ac

gy = —€* COS Py + €7 COS Py, @y = € sin @, - € sing,

a, = Re(c ch ac) — 2¢* (a cos @, — b sin @), a4 = Im(c ch ac)
a4y = —e® (a cos @, — b sin @,) — €7 (a cos @; + b sin @)
a, = ¢ (a sin @, + b sin ¢;) — ¢™* (a sin g, — b cos @,)
M= ([at)yh, c=(1—r)W
a=[Ys (V (W 27+ 307 W - 21
b=[Ys (VW 27502 — W — 2)]'%
9, =ab, ¢ =ab+ Y, @, =ab—%m, = Aol

Let us denote ming Ay, u, ) by Ax (4, 1), and the particular value of « at which this minimum ob-
tains by @x (1, 1). Curves of functions Ay (o, p, 1), calculated for fixed n and p, are called neutral curves.

With the use of the perturbation theory it is possible to show that A4 (0, ¢, 1) is independent of 0, i.e.,
Ay 0,0, ) =2,(0,u, 0), and in accordance with [4]
h 0, p, M) = 20y pt
of p have a commonpoint at o = 0.

If this value is greater than Ax(0,0) = 1100.65 [1], i.e., for p > px= (40/11) A*1(0,0), the stabilizing
effect of surface tension consists in that A 4 (p, 7) and o, @, n) increase with increasing n and tend,
respectively, to Ax (0,0) and @4 (0,0) as shown in Fig, 1.
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For p> py wehave wehave Ay (0, pi, ) <Ay (0,0) and there exists an n = 1, (u) such that
Aslp, n)= 40/11 p~t and oy @, nx) = 0. Such neutral curves are shown in Fig. 2. The curve of function
n4{p) is plotted in Fig. 3. Note that for sufficiently great n and y > px the neutral curves have local
minima close to the minimum of curve A4 (¢, 0, 0),

The expression for parameter n contains the number F, Since for sufficiently thick liquid layers in
strong gravitational fields this number is negligibly small, the effect of surface tension on the state of equi~
librium of a liquid layer need not be taken into consideration. An example in which parameters p and g
must be taken into account is given below.

For a 1-mm-thick layer of glycerin p = 0,007 and 7 = 30, and convection must begin at Rayleigh
number Ry = 500 with the wave number @ = 0, not at R = 400 and o = 2,2, as stated in [4].
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